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ABSTRACT 

Fecal contamination of surface waters is a widespread environmental and public health challenge in the United States (US). 

Each year, an estimated 6.5 million and 50 million cases of gastrointestinal (GI) illness in the US result from contamination 

of surface drinking water sources and recreational waters, respectively. Drinking water-associated GI illness is associated 

with heavy rainfall while illness among water recreators is associated with increased concentrations of pathogens and 

intensity of water contact. Human sources of fecal contamination are more likely to cause GI illness than fecal matter from 

other animals due to human-specific enteric pathogens, yet it is common to use non-human specific fecal indicator bacteria 

to identify possible contamination. Combined sewer overflow (CSO) activations are important contributors of untreated 

sewage to surface waterbodies in over 700 cities in the US. CSO activations increase concentrations of microbial 

contaminants in receiving waterbodies, but few studies have directly assessed the health risks associated with CSO 

activations. The proposed research is an integrated approach to investigate the impacts of CSOs on microbial water quality 

and gastrointestinal illness in a CSO-impaired river system that is used as a drinking water source and for recreation. 

 

The research outlined in this proposal will contribute to our current understanding of the impacts of CSOs on microbial 

water quality and gastrointestinal illness and generate knowledge useful for improved management of combined sewer 

systems. This research will 1) develop a model for prediction of fecal bacteria levels throughout a river that serves as both 

a drinking water source and a recreational resource, 2) address a gap in our understanding of the epidemiology of GI illness 

and CSO events, and 3) use a human microbial source tracker and fecal indicator bacteria for prediction of GI illness for 

recreational users in the Merrimack River. 

 

  



Gastrointestinal Illness a River with Combined Sewer Overflows                                                                          Beth Haley                    

2 

 

SPECIFIC AIMS 

Fecal contamination of surface waters is a major environmental and public health challenge in the United States1. Each year, 

an estimated 6.5 million2 and 50 million3 cases of gastrointestinal (GI) illness in the US result from contamination of surface 

drinking water sources and recreational waters, respectively. Rainfall is an important driver of drinking water-associated GI 

illness4–6, and illness among water recreators is associated with both the concentration of pathogens and degree of contact 

with the water7. In combined sewer systems (CSS), stormwater and sewage are collected in the same pipe. CSS are designed 

to discharge untreated sewage and stormwater directly into surface water bodies when the volume of water in the collection 

pipe exceeds treatment capacity—called a combined sewer overflow (CSO) event—often during heavy rainfall. Increased 

concentrations of microbial contaminants in receiving waterbodies following CSO activations are well documented9–13. 

Despite the clear conceptual connection between pathogens in CSO discharge and public health risk, few studies have 

directly assessed the health impacts or risks associated with CSO activations. 

The primary goal of this proposal is to improve our understanding of the water quality and health risks associated with 

untreated sewage released during CSO activations in a river system used for recreation and as a drinking water source. We 

propose to use the Merrimack River, located in New Hampshire and northern Massachusetts, as a model CSO-impaired 

river system14. We will leverage an existing dataset of fecal indicator bacteria to develop a spatial statistical model that can 

be used to predict concentrations of bacteria throughout the river. Associations between CSO events and GI illness in the 

Merrimack region will be examined using electronic medical records of emergency room visits. We will also conduct a 

quantitative microbial risk assessment (QMRA) for recreational users of the Merrimack River, leveraging field 

measurements of a human microbial source tracker and fecal indicator bacteria collected under wet and dry weather 

conditions. We propose the following specific aims: 

Aim 1: Develop a predictive spatial statistical model for Escherichia coli in the rivers and streams of the Merrimack 

watershed. 

Objective 1a: Develop a spatial stream network model for Escherichia coli (E. coli) using historical E. coli concentration 

data, meteorological patterns, point source locations, and land use and land cover characteristics. 

Objective 1b: Evaluate model performance and predictive accuracy of model variations that differ by autocovariance 

structure.  

Objective 1c: Apply the best model to generate predications of E. coli concentrations at equidistant unsampled locations 

throughout the river and stream network in the Merrimack watershed to identify impaired river sections, frequency of 

impairment, and areas with greatest uncertainty. 

Aim 2: Evaluate the relationship between CSO activations and acute gastrointestinal illness (AGI) in communities 

that source their drinking water from the Merrimack River and communities with a different drinking water source. 

Hypothesis 2a: Cases of AGI will be associated with upstream CSO activations, after controlling for confounding factors, 

only among communities that source their drinking water exclusively from the Merrimack River. 

Hypothesis 2b: Among communities with a CSO-impacted drinking water source, CSO activations will be a stronger 

predictor of AGI than heavy (>90th or >95th percentile) or extreme (>99th percentile) precipitation. 

Aim 3: Conduct a quantitative microbial risk assessment (QMRA) to estimate risk of gastrointestinal (GI) illness 

associated with recreational exposure in the Merrimack River. 

Objective 3a: Estimate the risk of GI illness for recreational exposures at two recreational areas in the Merrimack River 

using fecal indicator bacteria and a human microbial source tracker to estimate human pathogen concentrations. 

Hypothesis 3a Predicted risk of GI illness associated with recreational exposure is greater under wet weather conditions 

than under dry weather conditions. 

Impact: CSOs are a legacy problem that threaten human and ecosystem health. CSS persist due to the high costs of 

separating stormwater from sewage pipes and limited investment in water infrastructure updates. CSO activations are driven 

by precipitation, making them vulnerable to climate change. Research that helps us understand the risks to health may lend 

further evidence to decisions about permanent elimination of combined sewer systems. 
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RESEARCH STRATEGY 

A. Significance 

Fecal contamination in surface waters threatens human and ecosystem health 

Fecal contamination of surface waters is a major environmental and public health challenge in the United States (US). A 

national inventory of US waterways in 2017 identified fecal pollution as a top cause of impairment1. Sources of fecal 

pollution include agricultural15,16 and urban runoff16,17, treated wastewater effluent18,19, combined sewer overflows9,17,20, 

failing septic systems21, and wildlife excrement22.  

Exposure to pathogens in surface waters can occur through consumption of drinking water sourced from a contaminated 

surface water body or during water recreation. Adverse health outcomes associated with surface waters include 

gastrointestinal illness, respiratory infections, eye infections, ear/nose/throat infections, and skin irritations3,7,23–28. The 

primary outcome of interest for the proposed work is gastrointestinal (GI) illness given the abundance of epidemiological 

data on GI illness among water recreators3,23, the availability of well-established dose-response models for enteric 

pathogens29, and the prevalence of GI illness associated with drinking water exposure30. 

Drinking water and gastrointestinal illness 

Microbial contamination of drinking water due to poor source water quality, insufficient treatment, and water distribution 

network failures can cause illness among drinking water consumers2,31–34. In the US, an estimated 16.4 million cases of 

acute gastrointestinal illness (AGI) are attributable to drinking water each year with more than 40% of those cases 

attributable to source water quality or insufficient treatment2.  

Rainfall is an important driver of drinking water-associated GI illness, especially for surface water sources30,32,35. From 1948 

to 1994, 68% of all waterborne disease outbreaks in the US were preceded by precipitation events above the 80th percentile35. 

The majority of epidemiological studies investigating the relationship between GI illness and heavy rainfall found a 

significant but lagged relationship between precipitation events and increased GI illness with a lag period ranging from 1 

day to 6 weeks5,6,36–41. Important confounders in the relationship between precipitation and GI illness include 

temperature37,38,42, antecedent rainfall5,6,41,43, day of the week37, season6,36,37,42, and long term time trends37,42. Several studies 

found that there was an association between rainfall and GI illness only in communities whose drinking water came from 

surface water sources39,42,44. 

Water recreation and gastrointestinal illness 

An estimated 4 billion surface water recreation events—including swimming, paddling, boating, and fishing—occur each 

year in the US resulting in approximately 50 million cases of GI illness and 90 million illnesses overall3. Leading etiological 

agents for GI illness outbreaks associated with untreated recreational water in the US are enteric pathogens including 

norovirus, pathogenic E. coli, Cryptosporidium, Campylobacter, Giardia, and Shigella28,45. 

The risk of illness during recreation in untreated surface waters is associated with both the concentration of pathogens in 

the water and the degree of contact with the water7. Evidence suggests that children experience the largest attributable illness 

burden, likely due to having comparatively higher water exposure and being more susceptible to illness than adults25. A 

significant increase in relative risk of GI illness is found for swimmers (2.19 [95% CI: 1.82, 2.63]) and those engaging in 

moderate contact activities (2.69 [95% CI: 1.04, 6.92]; e.g., surfing, rafting, or whitewater canoeing or kayaking)7. While 

some studies find a nonsignificant increase in GI illness with minimal contact activities (e.g., canoeing, kayaking, rowing, 

or fishing)7, others have shown a significant increase in risk among even limited-contact recreators compared to non-

recreators46.  

Regulatory criteria for recreational water quality are based on fecal indicator bacteria and epidemiological studies 

Prospective cohort studies that found exposure-response relationships between fecal indicator bacteria (FIB, e.g. E. coli and 

enterococci) and GI illness among swimmers in wastewater-impacted waterbodies have served as the foundation for US 

recreational water quality criteria since the 1970s47–49. FIBs are useful indicators of fecal contamination because they are 

ubiquitous in human feces, exist in detectable concentrations in environmental samples, are rarely infectious to people, and 
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can be enumerated reliably with well-established field and lab protocols49. FIB enumeration methods include those in which 

the bacteria are grown (cultured) and those in which the DNA is extracted, amplified, and quantified using qPCR49.  

The relationship between FIB concentration and GI illness in recreators is often dependent on the source(s) of fecal pollution 

impacting the location of the study8,22,50,51. Studies at recreation locations impacted by a human-associated point source tend 

to demonstrate a significant relationship between FIBs and GI illness23,48 while the relationship between FIBs and GI illness 

is less predictable at locations impacted by non-point sources23,52–54. 

FIBs exist in the GI tracts of all warm-blooded animals, meaning that tests for FIBs cannot discern between human fecal 

inputs and feces from other animals49. Many of the waterborne pathogens that affect humans are only present in human 

sources8, so it is difficult to determine human health risk based on FIBs. Host-specific genetic markers, called microbial 

source trackers (MST), have recently been used to identify the presence of animal-specific fecal sources, including 

humans55,56. MST studies have found that animal sources of fecal contamination contribute greatly to FIB concentration 

loads23, but tend to carry limited risk to human health15,22,57.  

Estimation of human health risk with quantitative microbial risk assessment 

Quantitative microbial risk assessment (QMRA) is an established scientific framework for estimating risk of illness caused 

by infectious pathogens that can be used in place of or to complement epidemiological research29,58. A group of reference 

pathogens are commonly used to characterize risk of illness in a QMRA because they are detectable in environmental 

samples, are responsible for the majority of waterborne illnesses, have reliable dose-response relationships, and are 

representative of broader pathogen groups (i.e., bacteria, protozoa, and viruses)8,29,59. The ingested pathogen dose is 

estimated based on pathogen concentration in the water sample, rate of water ingestion, and the frequency and duration of 

exposure29. Dose-response relationships estimate the probability of infection, given an ingested dose of each reference 

pathogen. Finally, risk characterization estimates the cumulative probability of infection and the likelihood of illness given 

infection29.     

Obstacles to measuring the concentration of reference pathogens in water samples include the variety of pathogens, low 

concentrations of pathogens in environmental samples, and the cost and complexity of enumeration60,61. Although human 

health risk cannot be estimated from FIB concentration data alone, several methods have been proposed that either allow 

for source apportionment of FIBs using MSTs to estimate reference pathogen concentrations8,62 or estimate risk of illness 

directly from MST data51,59,63. 

Combined sewer overflows are important sources of human fecal contamination 

Combined sewer systems (CSS) exist in approximately 700 communities in the US where stormwater and sewage are 

collected in the same pipe and flow together to a wastewater treatment plant. CSS are designed to discharge untreated 

sewage and stormwater directly into surface water bodies when the volume of water in the collection pipe exceeds treatment 

capacity, often during heavy rainfall. CSO events are driven by frequency and intensity of precipitation events, and so tend 

to vary over space and time64. 

CSO events are significant sources of chemical and microbial pollutants including FIBs10–13,17; enteric viruses65,66 and 

protozoa10,65,67; human MSTs20,68; and antibiotic resistance genes69. CSOs can lead to one to two order of magnitude 

increases in the concentrations of FIBs10,11,13, pathogens10, and MSTs20 compared to dry weather concentrations. 

Increased precipitation in many areas due to climate change is expected to increase incidence of GI illness70,71, adding 

urgency to research that seeks to understand the relationships between rainfall, CSO events, and GI illness. 

Health risks associated with CSOs are understudied 

Despite the clear conceptual connection between pathogens in CSO discharge and public health risk, few studies have 

directly assessed the health impacts or risks associated with CSO activations. 

Of the three retrospective time series analyses investigating the relationship between CSO or sewage bypass events and GI 

illness through drinking water exposure, two suggest that sewage discharge events are associated with GI illness in systems 

where drinking water is sourced from the affected water body4,72. Using a similar methodology, Drayna et al36 found a 

significant association between extreme rainfall events and ER visits independent of CSO events. Two studies that combined 
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water quality modeling of sewage discharges to surface source waters with QMRA of GI illness due to drinking water 

contamination found that drinking water treatment is adequate for removal of pathogens to meet the health target only when 

treatment performance is optimal73,74. These studies emphasize the importance of understanding pathogen loading upstream 

of drinking water intakes and effective treatment of surface source waters. 

Recreational exposure to CSO-impaired water for a cohort of triathletes resulted in a 42% attack rate of GI illness compared 

to 8% among triathletes in non-CSO-impaired water (RR: 5.0 [95% CI: 4.0,6.39])75. A QMRA conducted in a CSO-impaired 

river for several recreational exposure scenarios found that the probability of contracting gastrointestinal illness over the 

course of a year varied from 0.14 to nearly 0.70 depending on the level of water contact65. A case-crossover study of 

childhood emergency room (ER) visits found that children who lived within 500m of a CSO outfall location had an elevated 

risk of a GI-related ER visit two days after a CSO event (OR: 1.16 [95% CI: 1.04,1.30]), possibly due to direct contact with 

CSO discharge through recreational activities or aerosolized pathogens76. 

The Merrimack River: An ideal study system 

Located in New Hampshire and northern Massachusetts, the 117-mile 

Merrimack River is an ideal system for studying the health implications of 

CSOs (Figure 1). The watershed spans over 5,000 square miles and contains 

6 communities with combined sewers (63 CSO outfalls in total)14. The river 

and its tributaries serve as a recreational resource for the 2.6 million people 

who live in the watershed14; including swimming, fishing, kayaking, boating, 

and rowing77. More than 500,000 people also rely on the Merrimack as a 

primary or intermittent drinking water source14, including the Massachusetts 

environmental justice communities of Lowell and Lawrence. CSOs are a 

concern for many community members and politicians in the watershed78, 

but barriers remain to eliminating CSOs from this river system including the 

cost associated with CSO mitigation, coordination between state regulators, 

and reliable information on the true impacts of CSOs in the watershed77. 

B. Innovation 

The proposed innovative research provides an integrated approach to 

investigating the dynamics of microbial water quality and gastrointestinal 

illness related to CSOs in the Merrimack River which has never been done 

in this waterway. Other innovative aspects of the proposed work include:  

 Direct investigation of the relationship between CSO events and GI 

illness using retrospective time series analysis and QMRA methods 

for drinking water and recreational water exposures, respectively 

 Creation of a novel spatial statistical model for E. coli that includes 

CSO outfall and wastewater treatment plant locations 

 A novel application of a proposed source apportionment method of 

FIBs in environmental samples to estimate pathogen concentrations 

using FIB concentrations enumerated with droplet digital PCR and a 

human MST, Bacteroides HF183 

C. Approach 

Aim 1: Develop a predictive spatial statistical model for Escherichia coli in the rivers and streams of the Merrimack 

watershed. 

Objective 1a: Develop a spatial stream network model for Escherichia coli (E. coli) using historical E. coli concentration 

data, meteorological patterns, point source locations, and land use and land cover characteristics. 

Objective 1b: Evaluate model performance and predictive accuracy of model variations that differ by autocovariance 

structure.   

Figure 1: The Merrimack River Watershed 
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Objective 1c: Apply the best model to generate predications of E. coli concentrations at equidistant unsampled locations 

throughout the river and stream network in the Merrimack watershed to identify impaired river sections, frequency of 

impairment, and areas with greatest uncertainty. 

Overview: The objective of this Aim is to develop and evaluate a predictive model for E. coli concentrations in the 

Merrimack River that accounts for spatial autocorrelation and the natural constraints of a river network (i.e., stream channel 

boundaries and flow direction). Spatial statistical models build on traditional multiple linear regression by including a spatial 

autocovariance function to account for random effects in the variance due to spatial autocorrelation. Terrestrial spatial 

statistical models account for spatial autocorrelation according to Euclidean distance, but spatial stream network (SSN) 

models are designed for stream networks where stream distance and flow direction are also relevant for spatial relationships. 

SSN models allow for a mixed model approach where the autocovariance structure can be defined in terms of flow-

connected and/or Euclidean distance. We will fit SSN models with different autocovariance structures and use the best 

fitting model to estimate E. coli concentrations and uncertainty at unsampled locations. The full model development and 

applications process is shown in Figure 2. This model can be used to inform future monitoring programs by identifying 

potential hot spots and areas with high uncertainty.  

Study Area: The Merrimack 

River flows from Franklin, 

NH to the Atlantic Ocean 

near Newburyport, MA. The 

watershed covers 5,007 

square miles and includes 

five major tributaries and 

over 6,000 miles of rivers 

and streams (Figure 1).  

Model Data:  

Water Quality Data: 

Culturable E. coli 

concentration data will be 

compiled from three 

sources: the national Water 

Quality Portal (WQP), 

Massachusetts Department of Public Health (MDPH) recreational water surveillance program, and a pilot study conducted 

by BUSPH in partnership with the Massachusetts Department of Environmental Protection (MassDEP) (Table 1). Only 

concentration data enumerated through an EPA-approved method for E.coli quantification79 will be included in this study.  

The WQP is a cooperative platform sponsored by the 

United States Geological Survey, Environmental 

Protection Agency, and National Water Quality 

Monitoring Council that provides public access to data 

collected by over 400 state, federal, tribal, and local 

agencies and organizations80. The WQP includes E. coli 

concentration data for 8,151 samples collected from 782 

river and stream locations throughout the Merrimack 

River watershed between 1990 and 2020 (Figure 3). We 

will omit lake samples and samples that were not 

validated or finalized. 

Figure 2: Summary of SSN model development process 

Table 1: Summary of E. coli samples collected from the Merrimack River 

watershed 
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Additional E. coli concentration data are available from routine recreational beach water quality sampling conducted by 

MDPH at one freshwater location in the Merrimack River (202 samples collected between 2002 and 2018)81. E.coli 

concentration data from a BUSPH pilot water quality monitoring study of 206 samples collected from 22 locations, primarily 

in the Lower Merrimack River, in 2019 and 2020 and approximately 200 samples collected from the same locations in 2021 

will be included. All E. coli concentration data will include location and date of collection. The limit of detection (LOD) 

varies from 1 to 10 (cfu or MPN)/100mL based on the culturable enumeration method and dilution used. We will include 

non-detects in the dataset at the value of the LOD49. We anticipate that E. coli concentration data will be right skewed, and 

so plan to use log-transformed concentration values. We will assess the temporal variation in the frequency and location of 

water quality sampling, and include adjustments in the model as needed for seasonal or long-term time trends that may be 

present. 

Predictor Variables: Meteorological data, land use/land cover characteristics, 

river characteristics, and point source data will be included in all models as 

predictor variables. Shapefiles of the stream network that have been 

reconditioned to be compatible with SSN analyses are available through the 

United States Forest Service Rocky Mountain Research Station82. The United 

States Geological Survey (USGS) National Hydrography Dataset (NHD)83 will 

be used to delineate watershed boundaries and include waterbodies (e.g., lakes, 

rivers, and reservoirs) into the SSN model. Land cover and land use data are 

available through the StreamCat dataset, which includes upstream 

characteristics for each stream reach in the NHD stream network84. Total daily 

precipitation and daily mean temperature will be included at 4km resolution. 

These modeled data are part of a gridded dataset developed by the PRISM 

Climate Group at Oregon State University85. Combined sewer overflow (CSO) 

outfall14 and wastewater treatment plant (WWTP)86 locations will be included 

in the model as potential point sources of E. coli.  

Model Development: 

Spatial Pre-Processing: We will use the STARS package87 in ArcGIS Pro88 to 

generate the spatial information required to fit the SSN model including a 

landscape network, a digital elevation model, prediction points, distance from 

the stream outlet, segment proportional influence, and reach contributing areas 

(RCA) for each stream segment. The RCAs will be used to calculate 

precipitation, temperature, land cover, impervious surface area, and point 

sources (CSO outfalls and WWTPs) for each stream reach. These spatial data 

will be exported as .ssn objects and directly imported to R statistical software89 

using the SSN package90.    

Model Components: The SSN package consists of tools needed to fit generalized linear models for stream network data that 

incorporates spatial autocorrelation. SSN models account for spatial structure in residual errors by including an 

autocovariance function to describe the spatial relationships among the model elements91. 

Considering the log-transformed E. coli concentration data as the response variable, a SSN model can be represented by 

Equation 1: 

     ln(EC(s, t)) = A(s, t) β + Z(s, t) + ε                                                      (1) 

where (EC(s, t)) is a vector of observations according to a spatial coordinate matrix (s) and time vector (t), A(s, t) is a design 

matrix for fixed effects (predictor variables), β is a vector of coefficients for the fixed effects, Z(s, t) comprises the variance 

explained by spatiotemporal autocorrelation in the data (random effects defined by a spatial autocovariance structure), and 

ε is a vector of independent random errors that comprises the variance unexplained by the model. 

Multiple Linear Regression Model: We will fit a multiple linear regression (MLR) model as a non-spatial comparison to the 

SSN models. The MLR model will be fit with the same fixed effects (predictor variables) included in initial SSN models 

Figure 3: River and stream E. coli sampling 

locations in the Merrimack River watershed, 1990-

2020 
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(i.e., precipitation, temperature, land cover, impervious surface area, and point sources). Unlike the SSN models, the 

assumption in the MLR model is that the random errors (ε) are independent of spatial relationships, meaning that the MLR 

model will not account for spatial autocorrelation. Following the notation of Equation 1, the MLR model can be expressed 

as: 

     ln(EC(s, t)) = A(s, t) β + ε                                                               (2) 

Model Fitting: We will consider different definitions of the error function Z(s, t) to compare models with varying spatial 

autocovariance functions. We will also fit a series of SSN models that to not account for temporal autocorrelation. We will 

use a mixed model approach that combines flow-connected and Euclidean distance autocovariance functions to account for 

a variety of spatial relationships including those that occur within the stream (flow-connected) and those that result from 

the straight-line distances over the surrounding terrestrial area (Euclidean)92 . For example, a flow-connected autocovariance 

function may better account for stream discharge whereas a Euclidean autocovariance function may better account for land 

cover and precipitation parameters91. We will utilize tail-up covariance models for flow-connected parameters given the 

passive, downstream movement of E. coli in a stream system92. The size of the contributing catchment area (RCA) will be 

used to determine stream segment weights, which is an important factor in the construction of a tail-up covariance function92.  

Model Selection: We will use Akaike Information Criterion (AIC) to evaluate overall model fit93 and use leave-one-out 

cross validation (LOOCV) to compare the predictive performance of all models91. Prediction accuracy will be assessed 

through the root-mean-square error (RMSE) as a measure of predictive capability and the proportion of variance in the 

observations explained by the fixed and random effects included in each model (R2)91. 

Prediction: 

We will use the model with the best fit to estimate E. coli concentrations at unsampled locations in the watershed as 

designated by a network of 1 km equidistant prediction points. Universal kriging91 will be used to estimate E. coli 

concentrations at all prediction points over the course of two years of the study period: one year with average occurrence of 

CSO events and the year with the most CSO events. Candidate years for this analysis will be selected based on the 

completeness of CSO event data. We will define water quality impairment as E. coli concentrations greater than the 

recommended 2012 Recreational Water Quality Criteria for a single sample maximum (410 cfu/100 mL)49. Impaired river 

sections and frequency of impairment will be assessed over the two prediction years.   

Prediction Uncertainty: 

A benefit of using a SSN model in contrast to a nonspatial regression model is that spatially unique standard errors will also 

be calculated for each prediction point in addition to an estimated mean concentration92. The standard errors for prediction 

points throughout the network will provide information on the precision of the predictions at each location; areas with large 

standard errors may warrant additional targeted sampling in the future, informing future water quality monitoring strategies. 

Previous studies suggest that standard errors tend to be smaller near sampling locations and increase with distance from a 

sampling location91,94,95. We will calculate standard errors for all prediction points in the Merrimack River watershed and 

identify areas with the largest uncertainty.  

Strengths and Limitations: 

Strengths: The SSN approach improves upon non-spatial regression modeling by accounting for spatial autocorrelation 

among sampling locations and allowing for different kinds of spatial relationships between points (flow-connected and 

Euclidean distance). Using this method and a diverse set of predictor variables, we are able to leverage a large existing water 

quality dataset without additional time and financial resources that would be necessary for extensive water quality 

monitoring in such a large watershed. Location-specific uncertainty provided by the SSN model will be useful in improving 

future monitoring efforts by identifying areas of greatest uncertainty and potential hot spots. As additional E. coli data 

become available through water quality monitoring programs in the watershed, they can be incorporated into the model, 

leading to iterative improvement. Through this process, ongoing monitoring efforts and the SSN model become processes 

working in tandem, each informing the other.  

Limitations: A geostatistical model like the SSN model relies on correlations as opposed to mechanistic or causal 

relationships. As a result, future research questions about specific changes to wastewater infrastructure elements in the 
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watershed (e.g., separation of combined sewers) cannot be addressed with the model proposed here. However, compared to 

mechanistic models, geostatistical models are much less complicated to implement due to fewer data and expertise 

requirements and they tend to still have good estimation accuracy96,97; in the two published studies using SSN models to 

predict fecal indicator organisms, R2 values are 0.7194 and nearing 195, respectively. We are proposing to use E. coli 

concentration data that were collected over 31 years during which time anthropogenic activities (e.g., changes to wastewater 

infrastructure, meteorological trends, increased development) may have impacted microbiological inputs to the streams and 

rivers in the watershed. We will assess temporal patterns in the concentration data and consider fitting separate models for 

shorter periods of time (e.g., five year increments) or including temporal variables as predictors. 

Aim 2: Evaluate the relationship between CSO activations and acute gastrointestinal illness (AGI) in communities 

that source their drinking water from the Merrimack River and communities with a different drinking water source. 

Hypothesis 2a: Cases of AGI will be associated with upstream CSO activations, after controlling for confounding factors, 

only among communities that source their drinking water exclusively from the Merrimack River. 

Hypothesis 2b: Among communities with a CSO-impacted drinking water source, CSO activations will be a stronger 

predictor of AGI than heavy (>90th or >95th percentile) or extreme (>99th percentile) precipitation. 

Overview: The objective of this Aim is to assess whether the association between upstream CSO activations and AGI differs 

depending on primary community drinking water source (Merrimack River or other drinking water source) over the study 

period (2014-2019). We will also evaluate the relationship between heavy precipitation and AGI to determine which 

predictor (CSO activations or precipitation) has a stronger association with AGI in communities with a CSO-impaired 

drinking water source.  

Exposure Groups: Community-level exposure status will be assigned based on drinking water source (Figure 4). The 

Merrimack River is the primary drinking water source for four Massachusetts communities: Lowell, Lawrence, Methuen, 

and Tewksbury (Exposed Group). Eight communities adjacent to the Merrimack River in Massachusetts that do not rely on 

the river as a drinking water source at any point in the year will be selected as the Unexposed Group (Table 2)98.    

 

     

Outcome – Emergency Room Visits for Gastrointestinal Illness: Data on emergency room (ER) visits for gastrointestinal 

illness will be used to determine community-level counts of AGI. Individual-level ER visit data to all Massachusetts 

hospitals for the study period (January 1, 2014 – December 31, 2019) will be accessed via the Emergency Department 

Database (EDD) from the Center for Health Information and Analysis (CHIA)99. Data from two other CHIA databases—

Figure 4: Exposure groups for Aim 2 based on drinking water source 

Table 2: Descriptive statistics for Aim 2 exposure groups 

a Weighted by population 

All demographic data is from the 2019 American Community Survey 5-

year estimates 
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the Hospital Inpatient Discharge Database and Outpatient Observations Database—over the same time period will be used 

to identify cases when a patient was admitted to the hospital or discharged to outpatient observation, respectively, from the 

emergency department. Data for each visit will include diagnosis code, town of residence, age, sex, and date of visit. AGI 

cases for this study will be defined as those diagnosed with specified gastroenteritis (International Classification of Disease-

10100 codes A00-A09), unspecified gastroenteritis (K52.9), nausea and vomiting (R11), and diarrhea (R19.7). Town of 

residence will be used to calculate the daily total number of AGI cases per 100,000 people for each exposure group 

throughout the study period. 

Exposure – CSO Activations and Precipitation: 

CSO Activations: Information on CSO activations in the Merrimack River watershed during the study period has been 

collected from the EPA Region 1 office. Data for each activation include date, location and discharge volume (Table 3). A 

daily time series of CSO events will be developed for each exposure group for the study period. Both the daily number of 

upstream CSO events and total upstream CSO discharge volume (millions of gallons per day, MGD) will be summed for 

each study community, and then totaled for the respective exposure group. This will allow for exposure classification at the 

group level that still considers the geospatial relationship of each community to CSO outfalls. 

 

Precipitation: We will access daily rainfall data from the National Centers for Environmental Information (NCEI)101. We 

will select a representative weather station in the Lower Merrimack region based on proximity to study communities and 

completeness of available data over the study period. We will create three binary exposure variables for heavy precipitation 

to identify days with rainfall above a certain percentile cutoff (>90th, 95th and 99th percentile)4,35,37 over the course of the 6 

years in the study period. 

Covariates: We will consider additional time and environmental variables in our analyses as covariates. Time covariates 

will include day of the week (categorical), Federal holidays (binary), and season (categorical). A spline function will be 

included to adjust for long-term time trends. Average daily temperature will be included as a covariate in all models, as 

temperature has been associated with increased rates of AGI in previous studies38,102. Daily average temperature will be 

calculated from the maximum and minimum daily temperature as recorded by the same weather station used to quantify 

precipitation. 

Statistical Analysis: We will conduct a retrospective time-series analysis to investigate the relationship between CSO 

activations and daily ER visits for AGI in the Merrimack Valley of Massachusetts from 2014 to 2019. We will also assess 

associations between heavy precipitation and AGI cases. We will examine the correlation between CSO activations and 

daily precipitation and consider including an interaction term when investigating CSO activations as the primary 

independent variable. 

We will use a Poisson regression with a distributed lag nonlinear regression model103 (DLNM) to investigate the relationship 

between CSO activations/ heavy precipitation and AGI within each exposure group (Equation 1). A Poisson regression 

model is appropriate because the response variable is composed of counts (number of daily AGI cases); we will use a quasi-

Poisson distribution if the data are overdispersed. The DLNM framework allows for non-linear relationships between 

exposure and outcome as well as temporally lagged associations. The variable temporal lag between surface water 

contamination and emergency room cases of AGI can be attributed to environmental transport, drinking water treatment 

time and distribution, disease incubation, and care-seeking behavior. We will also evaluate lag periods of 4, 8, 15, and 28 

days based on the literature4,5,37,43. We will calculate cumulative exposure-response functions by summing the effects across 

all lags. 

Table 3: Summary 

of CSO events in 

the Merrimack 

River watershed, 

2014-2019 
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We will conduct a sensitivity analysis to evaluate the relationship between AGI and variations of the predictor variables, 

namely CSO activations (frequency and cumulative CSO volume) and heavy rainfall above a percentile cutoff (greater than 

90th, 95th, and 99th percentiles). The cumulative relative risk of AGI following an exposure event (CSO activation or heavy 

rainfall) and confidence intervals will be used to assess and compare predictors of AGI. We will conduct sub-analyses by 

stratifying by age group and by season to explore age-related and seasonal patterns within each exposure group. We will 

also assess the relationship between CSO activations/heavy rainfall and all daily ER visits in each exposure group to 

establish whether the predictor variables are drivers of ER visits for all complaints5,37. All analyses will be conducted in R89 

using the dlnm package104 for the distributed lag model. 

Strengths and Limitations: 

Strengths: Our research will build on a 2015 study in Massachusetts that found a 13% increase in the expected rate of 

emergency room visits due to gastrointestinal illness among all age groups following 99th percentile rainfall in the Lower 

Merrimack region from 2003 to 20074. The proposed study will address sources of potential exposure misclassification in 

the 2015 study by incorporating CSO event data (instead of rainfall as a proxy), town drinking water source, and the 

geospatial relationship of CSO events and drinking water intakes into our analysis. The use of the DLNM framework is also 

a strength of the proposed study as it simultaneously allows for nonlinear exposure-response relationships and variable 

temporal lags. 

Limitations: As with any ecological epidemiology study, this analysis is limited by a lack of individual-level exposure data; 

as a result, no conclusions can be made regarding the cause of AGI in this study population. Additionally, exposure 

classification based on drinking water source does not address possible exposure to waterborne pathogens during recreation 

or consumption of contaminated water from other sources. Gastrointestinal illness caused by waterborne pathogens is often 

self-limiting; the use of ER visit data to quantify AGI presents the limitation of only taking into account extreme cases in 

what might be a more widespread issue. Relying on hospital admissions data of any kind excludes cases among people who 

lack access to healthcare or are unlikely to seek care. Because the total number of AGI cases is likely to exceed what is 

recorded in ER data, use of ER data likely biases the results towards the null, indicating that any detected association could 

be larger if outcome data were improved.  

Aim 3: Conduct a quantitative microbial risk assessment (QMRA) to estimate risk of gastrointestinal (GI) illness 

associated with recreational exposure in the Merrimack River. 

Objective 3a: Estimate the risk of GI illness for recreational exposures at two recreational areas in the Merrimack River 

using fecal indicator bacteria and a human microbial source tracker to estimate human pathogen concentrations. 

Hypothesis 3a Predicted risk of GI illness associated with recreational exposure is greater under wet weather conditions 

than under dry weather conditions. 

Overview: The goal of this study is to characterize the risk of developing GI illness due to recreational exposure at two sites 

in the Merrimack River using a QMRA framework. We will use concentration measurements of two common fecal 

indicators bacteria (FIB), Escherichia coli (E. coli) and enterococci, and a human-specific microbial source tracker (MST), 

Bacteroides HF183, to estimate enteric pathogen dose. We will use a probabilistic approach to account for uncertainty in 

pathogen concentration estimates and water ingestion rates. We will characterize and compare predicted risks under dry and 

wet weather conditions. 

Recreation Locations: We will estimate risk of GI illness at two sites in the Merrimack River with documented recreational 

use that are located downstream of CSO outfalls: Rynne Beach in Lowell, MA, and the Abe Bashara Boathouse in Lawrence, 

MA (Figure 5). Rynne Beach is the only public freshwater beach on the Lower Merrimack River105,106. Programs at Abe 

Bashara Boathouse engage thousands of children each year in small watercraft recreation including kayaking, canoeing, 

rowing, sailing, and stand up paddleboarding107. Pathogen concentration estimates will be calculated from water samples 

collected from these sites in 2020 and 2021. 

Data Sources: 

Water quality data: Water samples are collected from the two recreation locations included in the Merrimack River during 

the spring, summer, and fall of 2020 and 2021. Samples from 2020 (July through November) were collected from the center 
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channel of the river, while samples from 2021 will be 

collected along the shore of the Merrimack River. Center 

channel samples may be more representative of limited-

contact recreation exposures (e.g., kayaking, boating, and 

canoeing), while shore samples may be more 

representative of full-contact recreation exposures (e.g., 

swimming and wading). Samples are collected in sterile 

500mL glass bottles approximately 0.1 meter below the 

river surface and stored on ice until processed in the 

laboratory. A field duplicate, rotated among the sampling 

locations, is collected for each sampling event. A field 

blank is included at each sampling event. All samples are 

placed on ice and delivered to the microbiological 

laboratory at the Massachusetts Department of 

Environmental Protection (MassDEP) Wall Experiment 

Station within six hours of sample collection. 

Two-100mL portions of each sample are filtered for the 

recovery of Bacteroides HF183 human fecal marker and 

molecular quantification of E. coli and enterococci108. 

For each batch of field samples, the following set of laboratory quality control samples are filtered and processed through 

the entire analytical procedure: method blank (sterile reagent water), lab fortified blank (100mL sterile reagent water and 

10mL of wastewater), lab fortified matrix (100mL of one of the field samples with 10mL of wastewater), and a lab duplicate 

(filtration of an additional 100mL portion of one of the field samples). Wastewater used in the lab fortified blank and lab 

fortified matrix will be collected from a local wastewater treatment plant. The resulting sample concentrates were subjected 

to nucleic acid extraction as previously described108. Sample extracts are analyzed with droplet digital PCR as previously 

described109 for the HF183 human fecal marker, enterococci, and E. coli, and reported as genetic copies per 100mL 

(gc/100mL).     

Precipitation: Daily rainfall data will be accessed from the National Centers for Environmental Information (NCEI)101. We 

will select a representative weather station for each sampling location based on proximity to the site and completeness of 

available data over the study period (2020-2021). Days with total daily rainfall of 0.1 inches or above, as well as the 72 

hours after the rain event, will be considered wet weather days. 

Exposure Assessment: We will determine the ingested dose of each reference pathogen for three exposure groups: adult 

swimmers, child swimmers, and adult kayakers. The primary route of exposure that leads to GI illness is incidental ingestion 

of water during recreation110. Incidental ingestion can include ingesting water while swimming, exposure to pathogens via 

hand-to-mouth behavior, and swallowing inhaled water aerosols111,112. We will estimate GI risk for full- and limited-contact 

recreational activities that occur in the Merrimack River: swimming and kayaking, respectively. Other limited contact 

recreation that occur on the Merrimack, such as canoeing, fishing, sailing, rowing, and boating, result in similar ingestion 

rates and so are represented by the kayaking risk estimate113. 

Water ingestion rates: A range of ingestion rates have been published for swimmers and for kayakers 113,114. For swimming, 

we will characterize risk based on the 95% confidence intervals of ingestion rates for adults (95% CI: 11-14 mL/h) and 

children (95% CI: 17-33 mL/h)114. For kayaking, age-specific estimates are not available but we will use the ingestion rate 

estimates for kayakers who capsize for this limited-contact recreation scenario (95% CI: 0-16.5 mL/h)113.  

Exposure duration and frequency: Although activity duration and frequency may vary substantially among individuals and 

between swimmers and kayakers, duration and frequency of the activity will be standardized at a single, one-hour recreation 

event to allow for direct comparison of risk between activities. 

Pathogen concentration estimates: Reference pathogens in this study are consistent with many QMRA studies8,58,115 and 

EPA methods29: norovirus, Cryptosporidium spp., Giardia lamblia, Campylobacter jejuni, E. coli O157:H7, and Salmonella 

Figure 5: Recreation and QMRA locations in Lowell and Lawrence, MA 
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enterica. We will use measured concentrations of E. coli and enterococci to estimate the dose of each reference pathogen 

(μS
rp) according to the following equation, adapted from Soller et al8: 

     μS
rp =      CFIB       x RS

rp x pS
rp x D x G                                     (3) 

                      FS
FIB x 100 

where 

 S is the fecal contamination source; 

 CFIB is the concentration of the FIB attributable to the source in the sample (gc/100mL); 

 FS
FIB is the concentration of FIB in the source (e.g., sewage; gc/L); 

 RS
rp is the concentration of the reference pathogen in the source (pathogens/L); 

 pS
rp is the fraction of human-infectious pathogenic strains from source S (assumed to be 1 for human sources); 

 D is the duration of the recreation activity (assumed to be 1 hour for this study); 

 G is the rate of ingestion for the given recreation scenario (mL/hour). 

 

Ranges for pathogen (RS
rp) and indicator (FS

FIB) input parameters will be determined based on the literature8,116. 

Given the comparatively higher health risk associated with fecal contamination from a human source as opposed to non-

human sources8,22, we will focus on characterizing risk attributable to human sources (i.e., treated wastewater effluent and 

combined sewer discharge) in the Merrimack River. However, to use Equation 3 to estimate pathogen concentrations from 

FIB concentration data, we need to know the proportion of FIB concentration that can be attributed to human sources. We 

will leverage the ratio of Bacteroides HF183—a human fecal marker—to FIBs in raw sewage and the ratio of the same 

parameters in Merrimack River water samples to estimate the proportion of the FIB concentration that can be attributed to 

human sources62. This calculation, adapted from Wang et al62 can be described as follows: 

     Phum,observed = ȒM/R1_feces,mean(τ)                      (4) 

where Phum,observed represents the fractional contribution from a human source (e.g., treated wastewater effluent or untreated 

human sewage) to the overall FIB concentration in the water sample, ȒM is the observed value of the ratio between the 

concentrations of the source-specific marker and the FIB, and Rhum,mean(τ) is the mean of the ratio values of the concentrations 

of the source-specific marker and the FIB from representative samples of the human source at age τ62. Equation 1 can then 

be expressed as: 

    μS
rp =  CFIB,total x Phum,observed  x RS

rp x pS
rp x D x G                              (5) 

                     FS
FIB x 100 

where CFIB,total is the total concentration of the FIB in the sample (gc/100mL). The application of this ratio-based source 

allocation method to environmental samples is limited by variable decay rates between FIBs and the source-specific 

marker62. Molecular enumeration of E. coli and enterococci have shown similar rates of decay as Bacteroides HF183 in 

freshwater over 3-4 and 2-3 days, respectively, indicating that using molecular concentrations of FIBs will result in more 

reliable HF183:FIB ratios in water samples than would be possible with culturable FIB concentrations62. 

Uncertainty Assessment: Many of the input parameters in the risk model have inherent variability and uncertainty. We will 

conduct probabilistic analysis using Monte Carlo simulation using R software89 to describe the range of estimated ingested 

doses of the reference pathogens and the relative contribution to health risk. Consistent with previous work, log-uniform 

distributions will be used to characterize pathogen (RS
rp) and indicator (FS

FIB) input parameters, while water ingestion rates 

(G) will be modeled using a lognormal distribution8. Phum,observed will be calculated by weather condition (dry and wet 

weather) for each site as the average of concentration ratios, and it will be modeled in the Monte Carlo analysis using a 

normal distribution. Each model run will consist of 10,000 iterations for each of the two sites, for each of the three exposure 

groups, and in wet and dry conditions. 

Dose Response Assessment: Dose-response relationships are used in QMRAs to estimate the risk of infection given the 

dose of the pathogen29. Using the dose estimates for each reference pathogen generated from the Monte Carlo analysis, we 

will estimate the risk of infection (Pinf) according to well-established dose-response relationships (Table 4)8,115. 
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Risk Characterization: Risk of illness given infection with a reference pathogen (Pill_rp) will be calculated according to 

morbidity data from the literature8. The total probability of illness from a specific source (PS
ill) will be calculated using the 

probability of illness from each reference pathogen (PS
ill_rp): 

      PS
ill = 1 – Πrp(1 - PS

ill_rp)           (6) 

Risk will be characterized as total GI illnesses per 1000 recreational users at each site for each activity in wet and dry 

conditions. Estimated risks for wet days will be compared with estimated risk for dry weather days. Given that past studies 

have shown increased rates of illness among recreators following wet weather7,26,75, we expect that estimated risks will be 

higher on wet weather days.  

Table 4: Dose-response relationships for reference pathogens8,115 

Strengths & Limitations 

Strengths: A strength of the 

proposed work is leveraging FIB 

and a human MST to estimate 

human health risk; while molecular 

quantification of FIB and MST 

requires more laboratory 

sophistication than enumeration of 

culturable FIBs, these molecular 

methods are more reliable and 

common than direct measurements 

of pathogens. Another strength of 

this project is using a probabilistic 

approach to account for uncertainty 

and variability in the parameter 

inputs. Finally, the proposed 

QMRA will characterize risk at two locations in the Merrimack River with documented recreation use for three exposure 

groups and under dry and wet weather conditions, broadening the applicability of the results for community stakeholders. 

Limitations: A major limitation of this proposed study is accounting for differential decay rates in FIBs and MSTs62. In the 

Merrimack River, it is possible that several sources of human-associated fecal contamination are present in different times 

and locations, further complicating the ratios between FIBs and MSTs. The Monte Carlo analysis will account for some of 

the uncertainty this may introduce, but future work that measures non-human MSTs and pathogens directly could be useful 

in validating the ratio-based approach to source apportionment proposed here. The exposure assessment may not accurately 

describe the activities at these two locations, but the use of a recreational use survey throughout the Merrimack River 

watershed could improve the accuracy. 

  

Reference pathogen Model Parameter(s) 
Parameter 

Values 
Reference 

Norovirus Hypergeometric 
alpha 

beta 

0.04 

0.055 
Teunis et al, 2008a117 

Cryptosporidium spp. Exponential r 0.09 US EPA 2006118 

Giardia lamblia Exponential r 0.0199 Rose and Gerba, 1991119 

Campylobacter jejuni Hypergeometric 
alpha 

beta 

0.024 

0.011 
Teunis et al, 2005120 

E. coli O157:H7 Beta-Poisson 
alpha 

beta 

0.248 

48.8 
Teunis et al, 2008b121 

Salmonella enterica Beta-Poisson 
alpha 

beta 

0.3126 

2884 
Fazil and Haas, 1996122 
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